Flying Activities

MILITARY FLIGHT DATA TELECOMMUNICATIONS SYSTEM

Headquarters
Departments of the Army, of the Air Force, and the Navy
Washington, DC
26 August 1994

Unclassified
SUMMARY of CHANGE

AR 95-11/AFR 11-213/OPNAVINST 3722.8L
MILITARY FLIGHT DATA TELE - COMMUNICATIONS SYSTEM

This revision--

o aligns this manual with AFPD 11-2;

o changes the numbering format;

o and adds a glossary of abbreviations.
Flying Activities

MILITARY FLIGHT DATA TELE - COMMUNICATIONS SYSTEM

OFFICIAL

GORDON R. SULLIVIAN
General, United States Army
Chief Staff

BUSTER C. GLOSSON, Lt General, USAF
DCS/Plans and Operations

J. M. BOORDA
Admiral, United States Navy
Chief of Naval Operations

MILTON H. HAMILTON
Administrative Assistant to the
Secretary of the Army

F. J. HERRON
Captain, United States Navy
Assistant Vice Chief of Naval Operations

History. This publication has been reorganized to make it compatible with the Army electronic publishing database. No content has been changed.

Summary. This manual explains how to process flight data through Department of Defense (DoD) and Federal Aviation Administration (FAA) telecommunications system.

Applicability. It applies to all DoD locations with military base operations.

PropONENT and EXCEPTION AUTHORITY. Not applicable.

ARMY MANAGEMENT CONTROL PROCESS. Not applicable.

SUPPLEMENTATION. Not applicable.

INTERIM CHANGES. Interim changes to this regulation are not official unless they are authenticated by the Administrative Assistant to the Secretary of the Army. Users will destroy interim changes on their expiration dates unless sooner superseded or rescinded.

SUGGESTED IMPROVEMENTS. Not applicable.

DISTRIBUTION.

Air Force: F

Army: Distribution of this publication is made in accordance with the requirements of DA Form 12–09–E, block number 3448, intended for command level A for the Active Army; the Army National Guard; and the U.S. Army Reserve.

Navy:

SNDL A6 Headquarters U.S. Marine Corps

B2A Special Agencies, Staff, Boards, and Committees (Director, Defense Mapping Agency only)

B2E Defense Mapping Agency Components and Elements

B5 U.S. Coast Guard

21A Fleet Commanders in Chief

22A Fleet Commanders

Type Commanders

26A Amphibious Group

26F Operational Test and Evaluation Force Detachment

26G FBM Operational Test

26J Fleet Area Control and Surveillance Facility

27G Support Force

Contents (Listed by paragraph and page number)

Chapter 1
GENERAL PROCEDURES, page 1

Methods of Submitting Flight Data. • 1–1, page 1

Equipment Provided. • 1–1.1, page 1

System Circuitry. • 1–1.2, page 1

NADIN Switch. • 1–1.3, page 1

Equipment/Circuit Problems and Rerouting Traffic. • 1–1.4, page 1

Message Format (General). • 1–2, page 1

Chapter 2
DEPARTURE NOTIFICATION MESSAGES, page 2

Base Operations Responsibility. • 2–1, page 2

Sample VFR Departure (Flight Notification) Message: • 2–2, page 2

Visual Flight Rules (VFR) One Way. • 2–2.1, page 2

VFR Stopover Departure (Flight Notification) Messages. • 2–2.2, page 3

VFR Departure (Flight Notification) Message from Stopover Point. • 2–2.3, page 3

VFR Arrival and Cancellation Messages. • 2–2.4, page 3

IFR One Way. • 2–3.1, page 3

IFR Stopover. • 2–3.2, page 3

Departure From Stopover Point. • 2–3.3, page 3

Sample Composite IFR, VFR, and IFR Departure Notice: • 2–4, page 3

Other Departure Notices. • 2–5, page 3

*This regulation supersedes AFR 55–56/AR 95–11/OPNAVINST 3722.8K, 16 February 1993.

AR 95–11/AFR 11–213/OPNAVINST 3722.8L • 26 August 1994
Chapter 1
GENERAL PROCEDURES

1–1. Methods of Submitting Flight Data.
There are two methods of submitting flight data into the national air traffic system: by automated teleprocessing and by voice. The primary method of processing this data is through the automated Service B telecommunications system. Service B is part of the National Airspace Data Interchange Network (NADIN). This network provides DoD base operations with the capability to send and receive flight plans and related air traffic messages between worldwide US military base operations, Air Route Traffic Control Centers (ARTCC), and FAA Flight Service Stations (FSS). At base operations where voice procedures are used, flight data is submitted by interphone direct to the FAA FSS. Voice procedures are specified in attachment 3. The lead DoD agency for this program is Headquarters Air Force Flight Standards Agency (HQ AFFSA/XVA).

1–1.1. Equipment Provided.
Continental United States (CONUS) military base operations are equipped with state-of-the-ArtCC equipment for sending and receiving air traffic messages. This equipment is leased by the FAA and provided for DoD use. Procedures on equipment usage are found in publications issued to and available at base operations. If equipment must be moved, the circumstances describing the move must be provided, in writing, to the DoD Service B Program Manager (HQ AFFSA/XVA) 90 calendar days before requested move date.

1–1.2. System Circuitry.
Military base operations are provided with a dedicated circuit (or dial access) through which all messages are transmitted. Message traffic is automatically processed through the FAA switching centers and distributed according to address coding. Therefore, message must be prepared according to the instructions provided in this publication. Incorrectly prepared messages will be rejected and the originator subsequently notified.

1–1.3. NADIN Switch.
Two NADIN switching centers, one in Atlanta GA and one in Salt Lake City UT, monitor and control the Service B system. DoD bases east of the Mississippi River and in the Minneapolis ARTCC area are connected to NADIN Atlantic. Bases west to the Mississippi, except those in Minneapolis ARTCC are connected to NADIN Salt Lake City. These switching centers have the capability to selectively monitor any message and will reject unauthorized messages. DoD facilities will use this communications system and equipment for authorized air traffic messages only. Examples of nonacceptable materials are:

*: Classified messages or material.
*: Unnecessary or anonymous signals or correspondence.
*: Personal messages. Its use for unauthorized messages may be grounds for disciplinary action. Since each base is on a dedicated circuit, circuit control will immediately know the originator of the transmission.

1–1.4. Equipment/Circuit Problems and Rerouting Traffic.
When an equipment outage occurs or is anticipated, the involved facility will immediately notify its ARTCC who in turn will notify the appropriate NADIN switch (Atlantic NADIN 404–946–7675 or Salt Lake City NADIN 801–539–3172) of the situation. If base operations personnel are unable to transmit data, they will ask an adjacent facility to make to notification. NADIN will initiate action to reroute traffic to the tie-in FSS. Base operations personnel will also notify the local ARTCC and contractor repair facility. The appropriate 800 telephone number is 1–800–336–1551 when communicating with the repair facility. Base operations personnel will report outages in excess of 24 hours to the Service B Program Manager, DSN 858–4779, HQ AFFSA/XVA, 1535 Command Dr, Suite D309, Andrews AFB MD 20331–7002.

1–2. Message Format (General).
There are several different formats used for transmitting air traffic control and movement message. Although each type of message is explained in detail, certain entries are common to each message (figure 1.1).

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>Message involving safety of life and property. Restricted to emergency information.</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td>Priority operational and circuit control message.</td>
</tr>
<tr>
<td>FF</td>
<td>Flight movement, including modification and change messages directly relating to the safe and efficient operation of the aircraft.</td>
</tr>
</tbody>
</table>

NOTE: Self-addressing is not authorized as this action doubles the amount of data being processed.

Figure 1. Common Message Address Format

* Hold down the control key and the D or B key as required for this entry. The control D and B characters will print on the CRT screen, but will not print on the base operations printer.

AR 95–11/AFR 11–213/OPNAVINST 3722.8L • 26 August 1994
Table 1—Continued

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Message Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>Flight cancellation, delay messages, and all others.</td>
</tr>
</tbody>
</table>

Notes:
- Routinely, base operations personnel will use precedence identifier 'FF'. Message acknowledgments must be the same precedence as the message being received. Each message will also contain:
 - One or more addressees, using a three–letter identifier (Ident) for CONUS facilities or an eight–letter Ident for international agencies. Do not exceed seven addressees on the message address line. (69 characters including separating spaces.)
 - Date and time group (281630) in Coordinated Universal Time (UTC). UTC is the mean solar time at the meridian of Greenwich, England, used as a basis for standard time throughout the world. Normally expressed in four numerals 0001 through 2400. Also called Greenwich Mean Time, GMT, Greenwich civil time, universal time, Z–time, or Zulu Time.
 - Originators eight–letter ICAO identifier (KHTBXYXY).
 - The fifth through the eighth letters of an international ICAO identifier specify the agency or office receiving or sending a message. The most frequently used and authorized are:
 - YAYX– Government Civil Aviation Authority (FAA RO or HDQTRS)
 - YCYX– Rescue Coordination Center (RCC)
 - YDYX– Authority Supervising the Aerodrome
 - YFFYX– Aeronautical Fixed Station (FSS/IFSS/IATSC)
 - YMYX– Meteorological Office (NWS)
 - YNYX– International NOTAM Office (NOF)
 - YYTX– Telecommunications authority
 - YYWX– Military Flight Operational Control Center (ACP)
 - YYYY– Organizations not allocated a two letter designator
 - ZOZX– Oceanic Air Traffic Control Center
 - ZPZX– Air Traffic Service Reporting Office
 - ZQZX– Computer Facility at the Aeronautical Control Center (ACC) or Air Rout Traffic Control Center (ARTCC)
 - ZRZX–ACC/ARTCC. (Center in charge of a Flight Information Region (FIR) and Upper Information Region (UIR) when the message is relevant to a Visual Flight Rules (VFR) flight (AMIS))
 - ZTZX– Aerodrom Control Tower
 - ZZZX– Aircraft in flight.

Chapter 2
DEPARTURE NOTIFICATION MESSAGES

Immediately after a departure, base operations personnel will submit a flight notification, departure message to the next point of landing (figure 2.1). If this facility is not a full Service B location, submit the message to the destination tie–in FAA FSS. Initial departure messages will contain, as a minimum:
- Type of flight plan
- Aircraft identification
- Type aircraft
- Departure point
- Destination
- ETA
- Remarks; e.g., coded data pertinent to services, passenger, or cargo. In the absence of remarks, enter the letter “N” (meaning none) in the remarks field. When an FSS is an addressee precede remarks with a dollar sign ($).

NOTES:
1. The remarks section will include items applicable to that segment of flight. Enter “AERO CLUB” for those aircraft assigned to a base AERO CLUB. EXAMPLE: VFR N214MC C172 BLV BYH 1630 $ BLV AERO CLUB.
2. For civil aircraft enter users name and landing permit number, which should be indicated on the DD Form 175, Military Flight Plan, or FAA 7233–1, Flight Plan. (Obtain FAA Form 7233–1 from any FAA Flight Service Center.) Remember the pilot is required to enter this information as stated in his or her landing permit authorization letter. EXAMPLE: WOODALL HAF 900001C.
3. Destination station base operations will check the monthly Civil Aircraft Landing Permit Report to verify permit currency. User name will be listed by individuals last name or company first name, such as Admire, Mark A=Admire and Crown Central Petroleum Corp=Crown.

2–2. Sample VFR Departure (Flight Notification) Message:
Only the destination station will be addressed (or the tie–in FSS if the destination is not a full Service B location). When the FSS is an addressee, remarks must be preceded by a dollar sign ($) to allow automatic processing by AFSS.

EXAMPLES:
/B
FF BAD FF KDRIFYXY
072305 KRNDYXYX 072305 KRNDYXYX
VFR TALL11 T38 RND BAD 0015VFR TALL11 T38 RND

 Figure 2–1. Departure Notification Message Format.
2–2.2. VFR Stopover Departure (Flight Notification) Messages.
Address messages to all base operations or FSSs having tie-in responsibility for the different points of intended landing. Separate stopover legs by a slant (/) at the end of each leg except the last. Before the slant, include remarks and, if the message is addressed to DoD base operations only, include the proposed departure time applicable to each leg. Place remarks that apply to the entire route at the end of the message. Begin each stopover leg as a new line. The first leg will show ETA to the first stop. The additional legs will show estimated time en route (ETE) between legs. Enter a void time as a last line item.
NOTE: Although shown in the following examples, an FAA FSS is not required to include a proposed departure time from stopover points in Departure Notification Messages:
EXAMPLES:
/B
FF SKF BSM HLR
071400 KNGPXYXY
VFR R23467 UH1 NGP SKF 1532 P1600/
BSM 0+30 P1730/
HLR 1+50
This message, transmitted by Corpus Christi Naval Air Station base operations, indicates stopovers at Kelly and Bergstrom AFBs with the destination being Fort Hood. To calculate the void time, take the total time from takeoff to final destination, rounded to the next whole hour.

2–2.3. VFR Departure (Flight Notification) Message from Stopover Point.
En route stations are responsible for sending departure notices when an aircraft departs their location.
EXAMPLE
/B
FF BSM
071600 KSKFYXYX
R23467 D1605
This message sent by Kelly AFB to Bergstrom AFB indicates the aircraft departed at 1605.

2–2.4. VFR Arrival and Cancellation Messages.
When an aircraft arrives at its destination and an arrival or cancellation message has been requested, follow the following example:
EXAMPLE:
/B
FF RND
072020 KHLRYXYX
R23467 RAND A4015 HLR
This message sent by Ft Hood Army Airfield to Randolph AFB indicates arrival at 2015.

2–3.1. IFR One Way.
The same elements used in a VFR departure notice will be used in an IFR departure notice, except the type of flight will be shown as IFR.
EXAMPLE:
/I
FF PGB
281421 KADWYXYX
IFR E116 C9 ADW PBG 1430
Spoken, this departure message would read: “IFR, EVAC one one six, C9, Andrews to Plattsburgh, ETS 1430.”

2–3.2. IFR Stopover.
An example of a message of a C–21 from Andrews AFB to Plattsburgh AFB, Loring AFB, Logan Intl, TF Green State, Newark, Andrews AFB, Wright–Patterson AFB, and Scott AFB follows:
EXAMPLE:
/B
FF PBG LIZ BDR MIV FFO BLV
281425 KADWYXYX
IFR TUG11 C21 ADW PGB 1430 N/
LIZ 0+45 S/
BOS 0+45 $S/
PVD 0+10 $N/
EWR 0+25 $N/
ADW 0+30 SPECIFICATION A5O SMITH S/
FFO 0+50 A5O N /
BLV 0+40 DP ASO SMITH
Andrews base operations sends this departure notification message to Plattsburgh base operations, to Loring base operations, to Bridgeport Connecticut (services Logan Airport and TF Green State Airport), to Millville New Jersey FSS (services Newark New Jersey), to Wright–Patterson base operations, and to Scott base operations. The message also indicates that service is required at Loring AFB and Boston International (Intl), and a USAF code 5 M/Gen (A5) who requests no assistance (o) will be on loaded at Andrews AFB and offloaded at Scott AFB. See chapter 4 of DoD FLIP (General Planning) for VIP codes. Proposed times for each stop may be included if the message is between DoD base operations.
NOTE: AP is used at onload station to depict passenger pickup. DP indicates passenger deplaning station.

2–3.3. Departure From Stopover Point.
When the aircraft departs from a stopover point, base operations personnel at the stopover location will send a departure notice to the next destination.
EXAMPLE:
/B
FF LIZ
281615 KPBGYXYX
TUG11 D1605

2–4. Sample Composite IFR, VFR, and IFR Departure Notice:
EXAMPLE:
/B
FF NIR RND NBE
081945 KNGPXYXY
IFR VV27548 C9 NGP NIR 2104 P2130/
VFR RND 0+45 S P2220/
IFR NBE 1+10

2–5. Other Departure Notices.
It is not practical to provide examples of every possible departure notice. It is important however, to use the format specified above. If the departure message becomes involved, such as in the case of tactical missions that originate as formation flights and return as single ship, do not hesitate to use clear text to explain the mission more completely.

Chapter 3
DOMESTIC IFR FLIGHT PLANS HANDLING
3–1. IFR Flight Plan Proposals (CONUS).
Base operations personnel will submit all IFR flight plan proposals to the ARTCC computer within whose control area the IFR flight originates (figure 3.1). See attachment 2 for specific IFR message
An example of a C–9 Air EVAC Andrews AFB to Plattsburgh AFB follows:

EXAMPLE:
/B
FF XDC
281530 KADWYXYX
ADW1530017 FP E116 C9/A 460 ADW P1320 310/
ADW..OTT.J61.PSB.J59.SYR.J29.PLL..VAL17
2015..PBG/0050

3–1.2. Stopover Flight Plan.
Sample messages of a C–9 departing Andrews AFB with en route stops at Plattsburgh AFB, Loring AFB, Logan Intl Airport, TF Green State Airport, Newark Intl Airport back to Andrews AFB are shown in the following examples. Andrews base operations personnel send all IFR flight plan proposals:

EXAMPLES:
First Leg–Andrews AFB to Plattsburgh AFB sent to Washington ARTCC:
/B
FF ZDC
281233 KADWYXYX
ADW1230025 FP E116 C9/A 460 ADW P1320 310/
ADW..OTT.J61.PSB.J59.SYR.J29.PLL..VAL17
2015..PB/0050

Second Leg–Plattsburgh AFB to Loring AFB sent to Boston ARTCC:
/B
FF ZBW
281234 KADWYXYX
ADW1234026 FP E116 C9/A 460 PBG P1410 290/
PBG..PLB.J29.PQI..AWD..LOZ/0100

Third Leg–Loring AFB to Logan Intl Airport sent to Boston ARTCC:
/B
FF ZBW
281235 KADWYXYX
ADW1234027 FP E116 C9/A 460 LIZ 1610 310/
LIZ..PQI.29.BGR.J79.SCUPP..DOS/0045

Fourth Leg–Logan Intl to TF Green State Airport sent to Boston ARTCC:
/B
FF ZBW
281236 KADWYXYX
ADW1234028 FP E116 C9/A 460 BOS P1710 100/
BOS..BOSOX..PVD/0010

Fifth Leg–Providence to Newark Intl leg sent to Boston ARTCC:
/B
FF ZBW
281249 KADWYXYX
ADW1249029 FP E116 C9/A 420 PVD P1855
IALS..EWR/0025

Sixth Leg–Newark Intl to Andrews AFB leg sent to New York ARTCC:
/B
FF ZNY
281250 KADWYXYX
ADW1250030 FP E116 C9/A 450 EWR P2005 200/
EWR.SMST5..EML..ADW1800/ADW/0030

3–1.3. Composite IFP to VFR.
Following is an example of a C–9 Air EVAC Plattsburgh AFB to Loring AFB. IFR Plattsburgh AFB to Presque Isle VORTAC, VFR to Loring AFB. Submit IFR leg to appropriate ARTCC:

EXAMPLE:
/B
FF ZBW
281248 KADWYXYX
ADW1248028 FP E116 C9/A 400 BOS P1710 100/
BOS..BOSOX..PVD/0010

3.1.4. Composite VFR to IFR.
Following is an example of a C–9 Air EVAC Plattsburgh AFB to Loring AFB. VFR Plattsburgh AFB to Presque Isle VORTAC, IFR to Loring AFB. Submit IFR leg to appropriate ARTCC.

EXAMPLE:
/B
FF ZBW
311210 KPBGYXYX
PBG1210030 FP E116 C9/A 460 PBG P1410 290/
PBG..PLB.J29.PQI..VFR.LOZ/0045

3.1.4. Composite VFR to IFR.
Following is an example of a C–9 Air EVAC Plattsburgh AFB to Loring AFB. VFR Plattsburgh AFB to Presque Isle VORTAC, IFR to Loring AFB.
EXAMPLE:
/B
FF ZBW
311300 KBPGYXXY
PBGI1300009 FP EI16 C9/A 460 PQI P1410 290
PQI..AWD..LOZ/0025 :PU IFR OVER PQI

NOTE: Use of the colon (:) preceding remarks indicates that the remark is form all ARTCCs through which the flight transits.

3.1.5. Delay En Route Flight Plans.
A delay en route flight plan normally requires a separate message for each leg of flight. The following examples indicate a departure from Randolph AFB with terminal area delays, for approaches, at San Angelo, Texas, at Bergstrom AFB, Texas, and an arrival back at Randolph AFB. Such a flight plan requires three messages:

EXAMPLES:
/B
FF ZHU
151600 KRNDYXXY
RND1516002 FP TALL23 T38/P 420 RND
P1650 260
RND..SATJ2.JCT..SJT222016..SJT/0022 :D0+20 APCHS SJT RND

/B
FF ZHU
151700 KRNDYXXY
RND1517012 FP TALL23 T38/P 420 SJT
P1730 150
SJT.V77.J30.ACT..BSM325050..BSM/0040:D0 +20
APCHS BSM RND

The following flight plan specifies a delay en route at altitude and no change in the altitude structure. The delay may be indicated in the route of flight:

/B
FF ZME
191607 KNQAYXXY
NQA1607010 FP SKULL04 A4/P 370 NQA
P1630 190
NQA..MEM..IBG..MEI..NMM/0030

3-1.6. Instrument Route (IR) Flight Plan.
IFR flight plan messages indicating IR usage will include the entry and exit fixes in the route of flight and entry and exit times plus MARSA in the remarks.

EXAMPLE:
/B
FF ZHU
081955 KDLFYXXY
DLF1955053 FP RAKE12 T38/P 322 DLF
P22230 060
DLF.DLF327020..SLF329028.IR169.SJT2O90 35.FST..
ELP115030..ELP/0110
:IR169E2245X2305MARSA

The remarks that indicate route entry and exit times will be formatted in consecutive sequence, without spaces.

3-1.7. Short Notice IFR Flight Plan Messages.
If the IFR flight plan indicates a time en route of 30 minutes or less to the first stop, identify the destination as an addressee on the IFR proposal message.

EXAMPLE:
/B
FF ZME NMM
191607 KNQAYXXY
NQA1607010 FP SKULL04 A4/P 370 NQA
P1630 190
NQA..MEM..IBG..MEI..NMM/0030

3-2. Altitude Reservations (ALTRV):

3-2.1. CONUS.
Flight plans that include ALTRV information in CONUS airspace are processed to the FAA ARTCC by the Central Altitude Reservation Facility. Base operations should not resubmit to the CONUS ARTCC that portion of the flight plan, DD Form 175, Military Flight Plan, that contains an ALTRV being flown in US airspace.

3-2.1.1. If the ALTRV starts at the originating base, that is the aircraft is on an ALTRV immediately after departure, base operations personnel do not submit an IFR flight plan proposal message. The ARTCC performs all actions.

3-2.1.2. If the ALTRV is initiated or begins en route, use the following procedure:
3-2.1.2.1. The originating base operations submits a flight data message specifying the fix where the ALTRV begins, followed by the amount of time required to fly from the ALTRV entry point to the ALTRV exit point, followed by the exit point and remainder of route. EXAMPLE: flight plan route to (entry point) ABC 136050/ d02_00..XYZ (exit point) and flight plan route to destination. This base operations message is similar to the message used to show a delay en route at altitude. The ALTRV duration, or delay time, is determined from the ALTRV approval message.
3-2.1.2.2. Local procedures should ensure base operations personnel understand the ALTRV entry point, ALTRV delay time and exit point. The remarks section of the flight data message should specify the point where the ALTRV is joined and the ALTRV name. EXAMPLE: JOIN DING BAT1 ALTRV at ABC 136050.

3-2.2. International Flight Plans.
The ALTRV must be included in the International flight plan DD Form 1801. International Flight Plan, when the entire ALTRV takes place outside CONUS airspace. Base operations personnel will ensure that the ALTRV is included in the IFR flight data message (FPL) sent to the CONUS ARTCC computer. If the ALTRV begins CONUS airspace and extends into another country’s airspace, base operations personnel will have to transmit two light plan messages. The first flight plan message will be submitted in domestic format using the procedures above and sent to the CONUS ARTCC computer. The flight plan will also be sent to all addressees except the ARTCC computer.

3-2.3. Summary:
3-2.3.1. If the ALTRV is all in CONUS airspace, do not include the ALTRV as part of the flight plan message. Include the ALTRV entry and exit points and ALTRV duration in the text of the IFR flight plan message. Identify the ALTRV in remarks.
3-2.3.2. If the ALTRV is all in international airspace, include the entire ALTRV in the route of flight. Identify the ALTRV in remarks.
3-2.3.3. If the ALTRV begins in CONUS airspace and continues into international airspace, two messages are required:
- Send one IFR flight plan proposal message (domestic format) as in 3.2.3.1. above.
- Send the second message in International Civil Aviation Or-
ganization (ICAO) format to all addressees.

NOTE: The local ARTCC may have requirements that amend the above directions. Base operations personnel must work closely with the ARTCC to ensure a mutual understanding of ALTRV procedures exists.

3–3. Canceling or Amending Messages.
Flight plans previously submitted to the CONUS ARTCC computer may be amended by an amendment message (AM) or canceled by using a remove strip (RS) message until 30 minutes before the proposed departure time. After 30 minutes before the proposed departure time, base operations personnel must call the ARTCC for manual coordination.

3–3.1. AM Message.
The AM message (figure 3.2) is used to modify, add to, or delete previously filed flight plan data. When accepted, the amendment information becomes a part of the flight plan data base. An AM is user-generated and is different than a correction message (CM) which is sent to respond to an error message generated by the ARTCC computer. In Field 02 (aircraft identification) is to be amended, no other field may be amended in the same AM. If Field 02 and other fields are to be amended, send a RS message (figure 3.3) and reenter a corrected field plan.

EXAMPLE
/B
FF ZHU
121900 KRNDYXXYX
RND1827055 AM HUNT12 02 HUNT33

In this message, the change applies to “field two”, aircraft identification. Spoken, it would read “Hunt field two, is amended to read Hunt 33.”

EXAMPLE:
Randolph AFB needs to amend the proposed departure time—Field 07.

/B
FF ZHU
150545 KRNDYXXYX
RND0827055 AM HUNT33 07 P0730

/B

System Authorization

FF

1-Precedence Indicator 2-Addressee(s)

(Control D) 3-Date Time Group 4-Originator

(Control B) 5-Message Ident 6-Message Type 7-Aircraft Ident

8-Number of Field being amended 9-Change Information

1-Precedence Indicator -- normally FF.
2-Addressee - three-letter ARTCC identifier.
3-Date Time Group -- current date and time group (UTC). NOTE: In most cases, you may enter a / in place of the DTG, the center’s computer will input the correct DTG automatically. Check with your center to see if this applies to you.
4-Originator -- eight-letter ICAO listing.
5-Message Identification -- three-letter ICAO identifier code followed by time group and message number.
6-Message Type -- AM for amendment message.
7-Aircraft Identification -- aircraft call sign.
8-Field Being Amended -- enter the two-digit number indicating the flight plan field to be amended.
9-Enter corrected information.

EXAMPLES:
McChord AFB needs to amend the requested altitude—Field 09.

/B

Little Rock AFB needs to amend the second leg of a stopover it originated. All legs are controlled by the same ARTCC (in this case, Memphis) and the leg to be amended is out of Blytheville AFB.
This message amends DUMP 55's altitude (Field 09) out of Blytheville AFB.

Figure 3-3. Remove Strip Message Format.

3–3.2. RS Message.
The RS message is used to remove from the computer system a flight plan previously submitted.

EXAMPLE:
/B
GG ZKC
011705 KBLVYXYX
BLV1652147 RS R12345

This message cancels the stored flight plan for Army 12345. NOTE: if there is more than one flight plan on an aircraft, operating in the same ARTCC, the RS message must contain the call sign and location of the aircraft that is being canceled. The message text will read: BLV1652147 RS R12345/LRF, or another example: GS82313091 RS CHIEF41/ILM037070.

3–4. Errors and CMs.
Errors in IFR flight plan proposal messages are identified by the FAA computer and a rejection message is generated to the originator. Base operations uses a CM to provide the correct information.

3–4.1. Sample Error Message:
Base operations sends the following IFR proposal message:
/B
FF ZSE
121200 KTCMYXYX
TCM 1800031 FP LK04 F106/P 05000 TCM
P1700 4000
TCM..PDX/0030

The computer sends the following error message to base operations:
/FF KTCMYXYX
121225 KTCMYXYX
ERROR 031 05 SPD 05000

This message tells you that base operations message 031, field 05 (air speed) is in error.

3–4.2. Base operations CM.
This is the only time when base operations personnel will repeat a message number–field 00.

EXAMPLE:
/B
FF ZSE
121225 KTCMYXYX
TCM1800031 CM 500

NOTES:
1. The ARTCC computer stores or holds an erroneous flight plan for a specified period of time. This period varies between ARTCCs, but normally is no longer than 10 minutes after computer receipt. If base operations personnel do not transmit a CM within the time frame established by the ARTCC, the entire flight plan must be resubmitted.

EXAMPLE:

2. IFR proposed flight plan messages that contain errors and are sent to ARTCC computers outside or beyond the local ARTCC may not be identified back to the originator. The message originator will receive a normal ARTCC computer acknowledgment and a rejection message will be identified at the ARTCC receiving the proposal.

EXAMPLE: Ft. Campbell KY (served by Memphis ARTCC) sends an IFR proposal message to Jacksonville center. If the IFR message was sent to the wrong center, that ARTCC may generate a message back to originator indicating the error. The originator is then responsible for transmission to the correct center.

When a flight plan message is accepted by the ARTCC computer, an acknowledgment or “Roger” will be received as follows:

EXAMPLE:
/FF KRDYXYX
121320 KZCHZQZX
R002

Houston ARTCC computer (KZCHZQZX) acknowledges Randolph AFB (KRNDYXYX) IFR Message number 2.
3-6. ARTCC Computer Identifying Number (CID).
The CID is an automatic numbering system generated by the ARTCC computer. When a base sends an IFR flight plan message (e.g., LRF2100003) and the message is correct, the ARTCC computer “Rogers” the message by sending the base “R003.” At the same time, the ARTCC computer assigns an in-house CID. If several IFR messages are sent on the same aircraft, as is the case with the stopover flight plan, each message is assigned a CID. Base operations personnel are unaware of the CID but they may need the information under certain circumstances.

EXAMPLES: DUMP 55 is a C-130 operating out of Little Rock AFB on a stopover flight plan all within the Memphis ARTCC control area. The stopover flight plan route is Little Rock AFB to Eaker AFB to Little Rock AFB to Memphis. Little Rock AFB sends three messages:

LRF07000002 (originating at Little Rock AFB)
LRF07010003 (stopover at Eaker AFB)
LRF07030004 (stopover at Little Rock AFB)

Approximately 45 minutes before original departure, Little Rock base operations wants to amend the filed altitude of the stopover leg from Little Rock to Memphis. Little Rock base operations sends the following:

LRF1015012 AM DUMP55/LRF 09 260

The ARTCC computer looks for DUMP 55 and finds two flight plan messages on DUMP 55 out of Little Rock AFB. The computer sends this message to Little Rock AFB:

ERROR 012 02 AID DUMP55 FILD DUPLICATION
LRF P1100
BYH P0930
LRF P0800

This error message translates to: Error message 012, Field 02, aircraft identification (AID) DUMP 55 has more than one (duplication) flight plan message on file. The computer message then identifies all the messages on DUMP 55 using CID numbers, departure point, and proposed time. Now base operations can amend the stopover leg out of Little Rock AFB using the CID (070):LRF0715010 AM 070 09 2600.

3-7. Stereo Flight Plan.
A stereo flight plan is used to activate a route of flight that is prestored in the ARTCC computer. The flight plan message may be sent with the stereo identification as the only field 10 entry. The departure location (field 06) must agree with the stereo departure point. Variations from these procedures do occur within some centers. Letters of agreement must be established between base operations and the applicable ARTCC. Sample stereo entry:

/B
FF HBR GAG PNC ICT SLN KZFWRZRX
KZKCRZRX CDS SPS
111500 KTIKXYX
IR145 1400–1445 SFC–6000
IR145 1545–1630 SFC–6000
IR145 1715–1830 SFC–8000

Chapter 4
MILITARY TRAINING ROUTES (MTR)

4-1. MTR Policy.
Flight plans that indicate flights along MTR require special handling. Flight plan filing lead times and submission times to the ARTCC, as outlined in the FLIP Document, must be adhered to.

4-2. Scheduling Requirements.
MTRs are scheduled in advance. Instrument Routes (IR) and Visual Routes (VR) cannot be used without being scheduled. Unit scheduling organizations “owning” these routes provide base operations (with Service B capability) or the tie-in FSS with a daily schedule of route usage. Base operations personnel do not schedule these routes but will issue the scheduled usage to all FSSs, ARTCCs, and other base operations within 100 NM of the training route (see FLIP Document APPLICATION/1B). Messages will include route identifier, time of use, and altitude involved. (NOTE: Slow-speed, low-altitude training routes are not to be transmitted, briefed on, or posted). FAA FSS and ARTCCs are not required to acknowledge MTR schedules. While scheduling flexibility is necessary, local procedures should ensure that changes 2 hours before schedule departure are held to a minimum.

EXAMPLE:

/B
FF HBR GAG PNC ICT SLN KZFWRZRX
KZKCRZRX CDS SPS
111500 KTIKXYX
IR145 1400–1445 SFC–6000
IR145 1545–1630 SFC–6000
IR145 1715–1830 SFC–8000

Chapter 5
ICAO FLIGHT PLAN HANDLING (FAAH 7110.10, CHAPTER 7, SECTION 1)

5-1. ICAO IFR Flight Plans (FPL).
Address FPL messages to the ARTCC servicing the airport of departure using the three-letter ARTCC identifier and to all air traffic units providing air traffic control service (not including CONUS air traffic units). Transmit all IFR FPL proposals to the ARTCC not less than 1 hour before the proposed departure time. Dashes “–” and both open and closed parentheses (“()”) are required functions included in an IFR ICAO FPL message. Messages must adhere to ICAO standards, submitted in the exact format (figure 5.1) and be free of errors. ICAO FPL proposal messages will not be automatically acknowledged by the ARTCC computer. A voice call will be required to verify receipt of an FPL or AM. (See FLIP General Planning for additional information regarding ICAO FPLs.)
Numbers (1), (2), (3), etc., are used with the following information to explain flight data computer entries. They do not refer to the numbers printed on the DD Form 1801.

1. Precedence Indicator. Normally “FF”
2. Addressees. Eight-letter ICAO identifiers as required; do not exceed seven addressees (each addressee separated by a space or 69 characters including spaces per line. Only one line of address indicators may be sent at one time preceded by a precedence indicator. Messages concerning flights originating in the United States will be sent to the computer at the ARTCC; e.g., ZME.
3. Six-character date and time group; e.g., 121500.
5. Message Type. Insert left parentheses A (which indicates start of message), followed by the message type.
 - FPL Filed flight plan
 - CHG Changed or modification
 - CNL Cancellation
 - DLA Delay
 - DEP Departure
 - ARR Arrival
6. Aircraft Identification. Insert dash and aircraft identification (no more than seven characters; e.g., - M50237).
7. Flight Rules and Type of Flight. Insert dash, than I or V for IFR or VFR, followed by M if military, of S if scheduled air transport; e.g., –IM.
9. Radio Communications, Navigation, and Approach Aid, and SSR (Transponder) Equipment. Preceded by a dash (IM). One or more of the following letters are used to indicate communications/navigation/approach aid equipment:
 - A LORANA M Omega
 - B (Not allocated) O VOR
 - C LORAN C P Doppler
 - D DME Q (Not allocated)
 - E Decca R R NAV Route Equipment
 - F ADF T TACAN
 - G (Not allocated) U UHF RTF
 - H HF RTF V VHF RTF
 - I Inertial Nav W When prescribed by ARTCC
 - J (Not allocated) X When prescribed by ARTCC
 - K (Not allocated) Y When prescribed by ARTCC
 - L ILS Z Other equipment carried

Standard equipment is represented by an S and is considered to be
Very High Frequency (VHF), Radiotelephone (RTF), Automatic Direction Finder (ADF), Very High Frequency Omnidirectional
(VOR), and Instrument Landing System (ILS). If the letter Z is used, specify in item 15 (item 18 of DD form 1801) the other equipment carried preceded by COM/ or NAV/. SSR Equipment (Transponder)

N None
Transponder—Mode A, no coding
Transponder—Mode A, two digits—64 codes
Transponder—Mode A, four digits—4096 codes
C Transponder—Mode A, four digits—4096 codes and Mode C

Sample entry of 5, 6, 7, 8, and 9, above:

FPL=Flight plan message
–M50237=Aircraft identification
–IM=Flight rules and type flight
–C141/H=Type aircraft and wake turbulence category
–SI = Communications Navigation (COMNAV)/approach aid equipment /C=Transponder

CTR Entry: (FPL–M50237–IM–C141/H–SI/C

10. Aerodrome of departure and estimated off block time, preceded by a dash; e.g., –KRD1548.

11. True Airspeed and Flight Level. The true airspeed and flight level are part of the route of flight but separated here for clarification. Insert the first cruising speed in knots (indicated by N) in four digits, and the first cruising level in three digits (preceded by an F) without a space between them e.g., –N0290F230 (290 knots at an initial flight level of 230). A Mach number may also be used. Indicate Mach number to the nearest hundredths of unit Mach preceded by the letter “M” (M082). All requests for block altitudes will be identified in remarks (other information) section only. Do not show block altitudes in the route of flight section.

12. Route of Flight. The route of flight starts one space after the True Airspeed (TAS) and flight level. Use direct (DCT) when implying direct between all like elements; e.g., JAX DCT GNV DCT COVIA. If a change in altitude or airspeed is planned, insert a slash immediately after the point where the change is to take place; e.g., DCT MINOW DCT FISHER/N0440F330. This procedure is required even if only one of these quantities will be changed. Indicate latitude and longitude without a slash between them. Latitude and Longitude – Degrees Only (Seven Characters). Two figures describing latitude in degrees, followed by “N” (North) or “S” (South), followed by three figures describing longitude in degrees followed by “E” (East) or “W” (West). Insert zeros, where necessary to compile the correct number of figures; e.g., 46N078W. (Do not separate latitude and longitude by a slash “/”). Latitude and Longitude – Degrees and Minutes (11 characters). Four figures describing latitude in degrees and minutes followed by five figures describing longitude in degrees and minutes followed by “E” (East) or “W” (West). Insert zeros where necessary, to makeup the correct number of figures; e.g., 4620N07805W. (Do not separate latitude and longitude by a slash “/”). Bearing and distance from a navigation aid. The identification of the navigation aid (normally a VOR), in the form of two or three characters, then the bearing from the aid in the form of three figures giving degrees magnetic, then the distance from the aid in the form of three figures expressing nautical miles. Insert zeros where necessary, to makeup the correct number of figures; e.g., a point 180 degrees magnetic at a distance of 40 nautical miles from VOR “DUB” would read DUB180040.

13. Aerodrome of destination and Estimated Elapsed Time (EET), preceded by a dash; e.g., –MPHO0415.

14. Alternate Aerodrome. Enter ICAO identifier, one space after EET.

15. Other information, preceded by a dash; i.e., – indicates no other information (note after this entry the right parentheses, “)”, must be inserted to complete the message). If additional information is added, use one of the following abbreviations, a slash and the appropriate information in plain text or accepted abbreviation. If there are no remarks, indicate 0; i.e., –0. Do not use a dash within the text of the remarks.

EET and significant points or FIR boundary designators and accumulated elapsed time to such points or boundaries.

REG/. The registration marking of the aircraft, if different from the aircraft identification above.

SEL/. SELCAL Code, if so prescribed by the appropriate Air Traffic Service (ATS) authority.

OPR/. Name of the operator, if not obvious from the aircraft identification.

STS/. Reason for special handling by ATS; e.g., hospital aircraft or one engine inoperative, e.g., STS/HOSP, STS/ONE ENG INOP.

TYP/. Type(s) of aircraft, preceded if necessary by numbers(s) of aircraft, such as for a formation flight.

PER/. Aircraft performance data, if so prescribed by the appropriate ATS Authority.

COM/. Any additional COM equipment carried.

NAV/. Any additional NAV equipment.

DEP/. ICAO 4-letter location indicator of the location of Air Traffic Services (ATS) unit from which supplementary flight plan data can be obtained, if Air File (AFIL) is inserted in item 13.

RMK/. Any other plain language remarks when required by the appropriate ATS authority as deemed necessary.

EXAMPLES:

/B
FF MPLBYSXY MMIDZQXZ MHTGZQXZ MKKJQZXZ MPZLZRXZ MPZLZQXZ MPHYQXYX MHISZTZX ZJX 291326 KHTBYXYX (FPL–M644–IM–C141/H–SI/C
–KCHS1500
–N0435F350 J121 JAX DCT GNV DCT COVIA DCT MINOW DCT FRISH/N0440F330 UA9 DANUL UA321 TBG DCT
–MPHO0415 MHSC
–EET/MMID0149 MHTG0219 MPZL0300 REG/A40644 OPR/USAF STS/HAZ CARGO)

/B
FF KZNYZOXZ CZQMQZQX CZQXZQXZ BIRDZQXZ BIKFYXXY ZFW 262330 KTIKYYXY (FPL–TOWN30–IM
–E3/H–SHUIMPRT/C
–KTIK0130
–N0435F330 DCT TUL DCT SGF062068 DCT VHP089017 DCT CXR DCT SYR DCT ALB010867 AR212 PQJ33904/4M074F330 DCT YZV110050 DCT YZR DCT LOACH DCT 58N050W DCT 61N040W DCT 63N030W DCT KF280120 DCT 2K02012 DCT KF DCT BF900900 EGUN EET/CZQM0432 CZQX0503 BIRD 0730 50W0710 40W0757 30W0837 REG/50559 OPR/USAF STS/HAZ CARGO)

While multiple stopover flights are not authorized on the DD Form 1801, separate flight plan forms for subsequent legs of flight may be filed at the first departure aerodrome. The originating base operations will transmit the first flight plan message to the ARTCC controlling the departure point. Separate messages for the other legs may be transmitted by the originating base operations to the base operations at each intermediate stop. Base operations, in receipt of this flight plan information, will transmit the data to their local ARTCC facility. EXAMPLE: McGuire base operations receives ICAO flight plans for a flight with intermediate stops at Lajes Field, Mildenhall RAF, and terminating at Ramstein AB. McGuire AFB
sends the initial leg (McGuire to Lajes) to New York ARTCC for initial clearance. They then transmit to Lajes base operations, the flight plan from Lajes Field to Mildenhall RAF, and to Mildenhall base operations, the flight plan from Mildenhall AFB to Ramstein AB. Upon receipt, Lajes Field and Mildenhall RAF will submit the appropriate flight plan to their air traffic control facility.

EXAMPLE:
/B
FF KZMZRZX MUHAYQZ MMIDZQZX
MMIDZQZX
MHTGZQZX MKKZQZX MPZLZQZX MPH0YXYX
281507 KHNTQXYX
(DEP–M644–KCHS1505–MPHO)

Figure 5-2. ICAO Departure Notification Message Format.

5–3. ICAO Departure Message.
Base operations personnel at the originating station will send all ICAO departure notification messages (figure 5.2.). Messages will be sent to the same agencies addressed in the FPL message not including the originating ARTCC.

5.4. ICAO Delay Message.
Send a delay message (figure 5.3) when a delay is being incurred or is anticipated. Include all addressees in the original message.

EXAMPLE:
/B
GG KZMAZRZX MUHACQZ MMIDQZQZX
MHTGQZQZX MKKZQZX MPZLQZQZX MPH0YXYX
281400 KHTQXYX
(DLA–M644–KCHS1600–MPHO)
5–5. ICAO Change Message.
A change or modification message (figure 5.4) is authorized if you need to change flight plan data that has been submitted.

EXAMPLE:

```
/B
FF MMMXZQZX MMIDZQZX MHTGZQZX
```

NOTE: The A15' indicates that item 15 on the ICAO flight plan form is being changed.

5.6. ICAO Cancellation Message.
Use the following message format (figure 5.5) when canceling a message previously sent:

EXAMPLE:

```
/B
FF MMMXZQZX MMIDZQZX MHTGZQZX
```

NOTE: The A15' indicates that item 15 on the ICAO flight plan form is being changed.
Chapter 6
TRANSBORDER MESSAGE

6–1. General Information.
Air traffic messages between the United States, Canada, and Mexico are considered transborder messages. Military bases that experience difficulties in processing flight data to Canada should contact the Seattle FSS; for Mexico contact the San Antonio FSS. These facilities will provide guidance, as necessary.

6–2. Canada Transborder Messages.
Military base operations will transmit VFR and IFR departure notification messages concerning aircraft landing in Canada. Canadian FSSs will acknowledge VFR departure messages but normally do not acknowledge IFR departure messages.

6-2.1. Flight plans must indicate a designated airport of entry as point of destination.

6-2.2. Transmit flight notification messages in the following format:

EXAMPLE:

```
/B
System Authorization
FF CXYZZQZX
Precedence Addresssee
KOFFYXYX
Date Time Group Originator
IFR M3456 C141 OFF YYZ 1745 ADCUS6
```

NOTE: ADCUS 6 indicates that customs should be advised and that six persons are on board. In this example, all passengers are US citizens.

EXAMPLE:

```
/B
FF CXYZZQZX
091442 KOFFYXYX
CHG IFR M3456 C141 OFF YYZ 1815 ADCUS 7US
```

6-2.4. When correcting or revising a message, responsibility—transmit the complete message preceded by the contraction “CHG” (change).

EXAMPLE:

```
/B
FF CXYZZQZX
091442 KOFFYXYX
CHG IFR M3456 C141 OFF YYZ 1815 ADCUS 7US
```

Mexico requires notification of an inbound aircraft before its arrival. Transmittal of a flight notification message with “ADMISA” (Advance customs and Public Health Services) in the remarks is one method of satisfying this requirement.

6-3.1. Transmission of flight notification message will consist of the following items:

- Aircraft identification
- Aircraft type.
- Departure time.
- Departure point. Destination.
- Estimated time en route.
- Remarks: ADMISA, number of persons aboard, nationality, and pilot’s name (if customs notification required). REQ ACK (request acknowledgment).

EXAMPLE:

```
/B
FF MMMYYFYX
091450 KSKFYXYX
ADMISA 5US JACKSON REQ ACK
```

6-3.2. The departure station is responsible for Search and Rescue (SAR) action until an acknowledgment is received from Mexico. If an acknowledgment is not received within 30 minutes of transmission time, the flight notification messages should be retransmitted to the destination station and to Mexico City (MMXXMOW), which will then send an acknowledgment to the departure station and assume responsibility for the message.

6-3.3. As some Mexican facilities operate on a part–time basis, do not request SAR operations for overdue aircraft unless the destination confirms that the aircraft has not arrived or circumstances indicate that an accident may have occurred. Make inquiries to the destination station and Mexico City when an acknowledgment has not been received within 2 hours of the aircraft’s ETA, provided this is within the hours of operation of the destination station.

If acknowledgment is not received within 1 hour after departure, use the telephone to deliver the message.

EXAMPLE:

```
/B
FF CXYZZQZX
091442 KOFFYXYX
CHG IFR M3456 C141 OFF YYZ 1815 ADCUS 7US
```

Figure 5-5. ICAO Cancellation Message Format.
6-3.4. If no reply is received within 1 hour after the inquiry is transmitted or if the reply is negative, initiate preliminary communications search actions and transmit an information request (QALQ) message to stations along the route within the United States.

6-3.5. If preliminary communications search actions are not successful, notify your tie-in FSS and ask for their assistance. Maintain suspense files of all unclosed flight plans until the aircraft is located, even though this may be for an indefinite period.

Chapter 7
MISCELLANEOUS MESSAGES

7–1. About This Chapter.
This chapter includes selected Service (SVC), Arrival, Acknowledgment, and Flight Advisory messages.

7–1.1. SVC Messages.
SVC messages are used for a variety of information pertaining to or affecting the movement of air traffic (also see attachment 2). To request a repeat of a message from the originating station, see following examples:
EXAMPLES:
/B
FF PANCYFYX
111200 KRDNYXYX
QDMB A24591
/B
FF HIF
091820 KRNDYXYX
QSMB AJAX32
Aircraft returned to departure point and flight plan canceled.
EXAMPLE:
/B
FF SUU
192230 KTCMYXYX
CNL M50237 RETURNED TCM
To obtain information on a particular flight, you may send the following message:
EXAMPLE:
/B
FF AUS
091620 KDLFYXYX
QRUZ R34567

7–1.2. Arrival Message.
Send an arrival message on Canadian Ministry of Transportation, US Department of Transportation, FAA Aircraft, when requested or when an aircraft arrives without a departure message being received.
EXAMPLES:
/B
FF LFI
211200 KVPBYXYX
TUG11 LFI A1155 VPS
/B
FF BLV
101345 KBSMYXYX
A46789 BLV A1340 BSM FPNO

7–1.3. Message Acknowledgments.
Base operations personnel will acknowledge receipt of all Service B flight data messages within 10 minutes after receipt. Acknowledgments for inbound aircraft will be accomplished by transmitting the contraction “R” followed by the aircraft identification; for example, TUG11 a C21 out of Andrews AFB going to Wright–Patterson AFB, the Wright–Patterson acknowledgment would read:
EXAMPLES:
/B
FF ADW
131500 KFFOYXYX
R TUG 11
Sample acknowledgment message:
/B
FF VPS
132230 KSUUYYXY
R R 23914
Sample acknowledgment of a numbered message:
/B
FF LFI
211300 KADWYXYX
R001

7.1.4. Flight Advisory Message:

7.1.4.1. IFR Flight Advisory Message.
(See figure 7.1.) Service B circuits may be used to notify an aircraft when hazardous airfield conditions exist; for example, weather below minimums at destination. Advisories for IFR aircraft will be sent to the appropriate ARTCC (ZRZX).
EXAMPLE:
/B
FF KZDCZRRZX
231500 KADWYXYX
FLT ADVY TUG11 C21 FFO ADW
ADW WEA BLO LNDG MIN. SUG PROC LFI
ADZ INTENTIONS. DLVR 1625
FFO BASEOPS
7.1.4.2. VFR Flight Advisories.
Flight advisory messages for VFR aircraft will be sent to the appropriate FSS nearest the aircraft’s estimated position.

7.1.4.3. En Route Flight Plan Changes.
Normally all en route changes to flight plans will be made with a FSS though the en route ARTCC controller. An example of a Service B message indicating a change of destination follows (C–21 TUG11 en route Andrews AFB to Wright–Patterson AFB changed destination to Scott AFB over Zanesville, new ETA 2030).

EXAMPLE:
/B
FF BLV FFO ADW
151945 KZZVYFYX
IFR TUG 11 C21 BLV 2030 SOVR ZZV 1930
ORIG DEST FFO

Chapter 8
OVERDUE AIRCRAFT
(NOTE: US Air Force refer to AFI 13–202)

8–1. Agency Responsibilities.
Overdue aircraft communications search responsibility is shared between the DoD and FAA. The destination host base operations is responsible for preliminary communication search activities, and the FAA destination tie–in FSS is responsible for all extended communication search actions.

8–1.1. Destination Base Operations.
If an inbound aircraft (including aircraft flying locally and round robin) has not arrived or communications cannot be established within 30 minutes after ETA, the destination host base operations will initiate preliminary communications search actions.

8–2. Extended Communications Search.
Although the FAA is responsible for extended communications search activities, the military base operations may be in receipt of communications search traffic that will require a response. As a result, the following information is provided: (Ref: FAAH 7110.10, chap 8)

8.2.1. Information Request (INREQ) Message.
If the reply to the QALQ is negative, or if the aircraft has not been
located within 30 minutes after it becomes overdue (1 hour after
ETA), the FAA will:

: Transmit a numbered INREQ message to the departure station,
flight watch stations with communications outlets (see FAA M14
charts) along the route, other FSSs along the route, and the Rescue
Coordination Center. If these stations are within 50 miles of the
Great Lakes, also transmit the INREQ to the Cleveland FSS.

: Include all information in the INREQ message that will assist
in the search activities.

EXAMPLE:

```
/B
DD REE SPS FTW MWL AUS SAT
KZFWZRZX KZHUZRZX KRCCYCYX
091655 KSATYFYX
INREQ N2821Z C172 TAS 110 D1320 REE 65
DCT MWL AUS SKF FEXHA 1720 PILOT
JOHN JACOBS FONE 65607823
AF AERO CLUB ACFT 4POB WHITE WITH
RED TRIM
```

NOTE: INREQ messages are also addressed to ARTCCs along the
route of flight and the Air Force Rescue Coordination Center–KRCCYCYX. An eight-letter identifier must be used when
sending to the RCC.

8.2.2. INREQ Action Upon Receipt.

All stations in receipt of an INREQ are required to take some type
of action.

8.2.2.1. Departure Station will hold the INREQ message in
suspense.

8.2.2.2. En Route Stations will see information about the aircraft:

: Check operational records.

: Check airports in their area.

: Check local Air Traffic Control agencies and initiate a ramp
check.

: Reply to the INREQ within 1 hour. If the reply contains perti-
nent information, send a numbered message to the INREQ origin-
tor.

EXAMPLE:

```
/B
DD SAT SPS MWL AUS REE SKF
KZFWZRZX KZHUZRZX KRCCYCYX
091718 KSATYFYX
REF INREQ N2821Z 30N MWL 1355.REQD
AUS WX.
NO OTHER INFO AVAIL
```

8.2.3. Alert Notice (ALNOT) Message.

ALNOT messages are sent 1 hour after transmission of the INREQ
message, or upon FEXHA time, whichever comes first (if all in-
quires to the INREQ were negative).

8.2.3.1. ALNOT messages contain all items of the INREQ plus
any information received as a result of the INREQ inquiries.

8.2.3.2. ALNOT messages are addressed with priority indicator
of “SS”.

8.2.3.3. The FAA calls the RCC at Scott AFB 10 minutes after
issuance of the ALNOT to assure delivery and to answer an
inquiries.

8.2.3.4. ALNOTs are addressed to all Service B circuits serving
the ALNOT search area plus the RCC.

NOTE: ALNOTs are not numbered.

8.2.4. Receipt of ALNOT Action.

Upon receipt of an ALNOT, each station whose area extends into
the ALNOT search area will.

8.2.4.1. Immediately conduct a communications search of those
airports. That could accommodate the aircraft and were not checked
during the INREQ status. Notify originator of search results within
1 hour of receipt. Use a numbered message.

8.2.4.2. Deliver ALNOT information to adjacent terminal
facilities.

8.2.4.3. Request appropriate law enforcement agencies to check
airports which could not be contacted, otherwise.

8.2.4.4. Request search assistance from aircraft traversing the
search area.

8.2.4.5. Suspense ALNOT until canceled.

8.2.5. Cancellation of INREQ or ALNOT.

INREQs will be canceled by the originator of the message. AL-
NOTs are canceled by the RCC or the facility that originated the
message. When information is received indicating an aircraft arrival,
cancellation, extension of flight plan, or information that the aircraft
has been located, the INREQ/ALNOT originator will transmit a
cancellation message.

EXAMPLES:

```
/B
DD SPS FTW MWL AUS KZFWZRZX
KZHUZRZX KRCCYCYX
091810 KSATYFYX
ALNOT N2821Z CNLD WRECKAGE LCTD 35NW SAT
```

NOTE: XXMM, etc., indicates an all circuit message; base oper-
ations cannot use all circuit message addressing.
A–2.1. Voice Interphone Procedures

All flight data will be voiced to the tie-in Flight Service Station (FSS) when Service B automated equipment is not available.

A–2.1.1. Manner of Speaking.
Clear enunciation is necessary at all times. Speak directly into the interphone instrument in a moderate tone of voice. To avoid repetition, do not speak faster than the FSS specialist can accurately copy. Spelling is not necessary unless the work is peculiar or seldom used. Where spelling is required, use the International Civil Aviation (ICAO) phonetic alphabet.

A–2.1.2. Initiating and Terminating a Conversation:

A–2.1.2.1. Military base operations Initiating.
Before using the interphone, ensure the circuit is not in use; then activate the proper ringing device. When the FSS answers, state your location, facility, and type messages. The following are examples of initiating communications:

A–2.1.2.1.1. IFR Flight Plan Message.
McCalister Flight Service receives a call from Tinker AFB base operations (figure A2.1).

A–2.1.2.1.2. Departure Notification Message.
Tinker AFB calls McCalister Flight Service (figure A2.2):

A–2.1.2.1.3. Delay En Route Flight Plan.

A–2.1.2.1.4. Stopover VFR Flight Plan.
This voice notification is provided by Tinker AFB base operations to Oklahoma City FSS. “Tinker Base Operations, Stopover Flight Plan (pause), VFR, Army 211, UH1, Departed Tinker, landing McConnell I-A-B, ETA 1910, next leg (pause), landing Richards-Gebaur, G-V-W, 1 hour en route (operator’s initials).”

A–2.1.2.1.5. Stopover IFR Flight Plan.

A–2.1.2.2. FSS Initiating.
St Louis FSS has an inbound flight plan to deliver to Scott AFR. St Louis activates the appropriate ringing device (figure A2.3.).
Appendix A
INSTRUMENT FLIGHT RULES (IFR) FLIGHT PLAN MESSAGE

A–3.1. IFR Flight Plan.
The purpose of the IFR proposal message is to establish a data base for the flight plan. Each message is composed of fields and elements and when accepted by the computer, becomes part of the data base.

A–3.1.1. Fields.
The "body" (not including the address and originator elements) of an IFR flight plan message is made up of 11 data fields in a fixed order. Each data field is made up of one or more elements. Fields are separated from each other by a space.

A–3.1.2. Elements.
An element is made up of one or more nonspace characters; e.g., SPS, separated from other elements in a field by a slash or a period.

A–3.1.3. IFR Flight Plan Message (Fields and Elements):

Field 00 Field 01 Field 02 Field 03 Field 04 Field 05
SOURCE MSG TYPE ACF'T IDENT ACF'T DATA USER ONLY AIRSPACE
IDENT IF DIRECTED

Field 06Field 07 Field 09 Field 10 Field 11
DEPT TITUDE ROUTE REMARKS

Sample Entries:

<table>
<thead>
<tr>
<th>Field 00</th>
<th>Field 01</th>
<th>Field 02</th>
<th>Field 03</th>
<th>Field 04</th>
<th>Field 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADW1530002</td>
<td>FP</td>
<td>E116</td>
<td>C9/A</td>
<td>460</td>
<td></td>
</tr>
</tbody>
</table>

Field 06 Field 07 Field 09 Field 10 Field 11
A D W P 1 3 2 0 3 1 0 A D W OTT.J61.PSB.J59.SYR.J29.PLB..VAL1720015..PBG

3–2. Data Fields Required For IFR Flight Plan Messages:

A–3.2.1. Field 00.
Source Identification – ten characters required:
- Three-letter ICAO identification (station identifier)
- Time (UTC)
- Local three-digit message number.
Sample Entry: ADW1530002

A–3.2.2. Field 01. Message Type
- two letters followed by a space:
 - FP (Flight Plan) – used when transmitting a flight plan. Sample entry: FP
 - AM (Amendment) – used to amend flight plan data.
 - CM (Correction) – used to correct an error as identified by the ARTCC computer.
 - RS (Remove Strip) – used to remove a flight plan.
 - SP (Stereo Plan) – used to enter a stereo flight plan.

A–3.2.3. Field 02. Aircraft Identification
- (two or seven characters), followed by a space. If there are more than seven characters, abbreviate to seven characters and explain in the remarks. Examples: TOXEN22, M12345, E116.

A–3.2.4. Field 03. Aircraft Data
- Consists of two to nine characters including /, followed by a space. Examples: T38/A, H/C141/R, 3H/C141/R, 2/F15/P.
- Number of aircraft and or “Heavy” Indicator (two–character limit).
- Type of Aircraft (four–character limit).
- Equipment Suffix (one–character limit).

A–3.2.5. Field 04.
Used only when specifically directed by the ARTCC.

A–3.2.6. Field 05. Airspeed (True Airspeed)
- Tow to four characters followed by a space. Sample Entry: 350

A–3.2.7. Field 06. Departure point or point where clearance begins
- (must be a fix, and may also include fix radial distance). Consists of two to twelve characters, followed by a space. Sample Entry: DLF

Consists of the letter “P” and a four–digit time group (UTC) followed by a space. If an error is made in the proposed time and the error indicates a proposed departure time that is “before” the current actual time, the computer will acknowledge the message and store the flight plan for departure the next day. For example, if the current time is 1400Z and the proposed time is entered as 1300Z, the computer will think the proposed time is 1300Z the next day. Sample Entry: 1400

- Two to seven characters followed by a backward slant. Altitudes or flight levels will be expressed in hundreds of feet without leading zeros; e.g., 410. Other approved entries are: VFR on top (OTP) Block altitude (190B240) (When placed in proper message format, the requested altitude element is followed, without a space, by a backward slash and then a new line.)

Forty element limit except flight plans submitted to New York, Washington, and Cleveland ARTCCs which have a limit of 32 elements. Double periods count as one.

A–3.2.10.1. Elements.
Separated by one or two periods.
- Unlike elements are separated by one period: FIX.RTE.FIX.RTE.FIX
- Like elements are separated by two periods: FIX..FIX.RTE..RTE.FIX

A–3.2.10.2. Fix elements.
Describe a geographical location.

A–3.2.10.3. Fix name.
Consists of two to five alphanumeric characters.
A–3.2.10.4. Fix, radial, distance.
Consists of eight to eleven alphanumeric characters; e.g., RND135021.

A–3.2.10.5. Latitude and Longitude.
Consists of nine to twelve alphanumeric characters; e.g., 3640N/09250W.

EXAMPLE:
DLF..THX056012..2955N/09912W..10112W..ABI.

A–3.2.10.6. Route Elements.
Consists of airways, routes, Standard Instrument Departures (SID), Standard Arrival Routes (STAR), published radials, Military Training Routes (MTR), and special rout elements.

A–3.2.10.7. Airways.
Indicate the airway designator; e.g., V163, J21.

A–3.2.10.8. Routes.
This includes Radar Navigation (RNAV) routes, Oceanic Routes, and North American Routes:

EXAMPLE:
RNAV–J843R
Oceanic–A15,B12
North America–NA50,NA9

If used, the SID must be specified as the second element in Field 10. EXAMPLE: LAX.OCEN3.DAG..GFS.V210.GCN. (This example indicates an Ocean 3 (OCEN3) SID to Dagget (DAG)).

A–3.2.10.10. Standard Terminal Arrival Route.
If used, the STAR must be specified as next to the last element in Field 10.

EXAMPLE:
RND..MARCS.V198.GLAND.BLUMS5.HOU. (This example indicates a BLUMS 5 arrival to Houston.)

A–3.2.10.11. Published Radials.
Published radials (e.g., within a preferred route) are considered airways. EXAMPLE: LRD012..SAT202.

Certain military routes are considered coded routes; e.g., IR routes, Refueling Tracks and Anchors. The route designator must be preceded and followed by the entry and exit fixes in terms of fix, radial, and distance.

EXAMPLES:
TNP355025.IR252.PKE107012
ABQ..TCC.ONM..ONM075057.IR134+2.ALS0800700..
GAG.ARI14.CIM276038..LVS..TCC.J6.AMA.J26.TXO.

CVS001035..CVS0445 : TANKER BLAST 41

A–3.2.10.13. VFR Elements.
Used when an aircraft is proceeding IFR to a fix and then VFR or VFR to an IFR pickup point. NOTE: The ARTCC computer stops processing whenever it reads VFR. EXAMPLE: Aircraft is going from New Orleans to Randolph AFB. The pilot files VFR to CRP and then IFR. The route of flight will read CRP.V163.THX..RND (Flight Plan remarks will indicate: VFR Departure). EXAMPLE: Aircraft files IFR to SAT then VFR to COT: HLR..AUS.V17.SAT.VFR.COT.

A stereo route must specify the identification of a prestored flight plan. The flight plan message may be entered with the stereo identification as the only Field 10 entry. The stored data will automatically replace the stereo identification when received at the ARTCC.

A–3.2.10.15. Estimated Time En Route (ETE).
Consists of an element separator (/) and four digits applicable to the destination: CVS/0445.

A–3.2.11. Field 11 Remarks.
This is an optional field. Data in this field are separated from Field 10 by a space and is limited to air traffic control remarks.

• Full Route Clearance (FRC) will be added to the flight plan remarks any time the route of flight transmitted to the ARTCC is different than the route the pilot filed. This action requires the ARTCC controller to issue an FRC to the pilot, thus eliminating any possible confusion. When used, FRC must be the first remark in Field 11.

• The overcast symbol, represented by a question mark (?) On the Cathode Ray Tube (CRT) keyboard, is followed by the remarks applicable to the ARTCC controlling the departure point.

• The clear weather symbol, represented by a colon (:) on the CRT key board, is followed by the remarks applicable to all ARTCCs through which the flight transits, including the originating ARTCC.
Glossary

Section I
Abbreviations

ADF
Automatic Direction Finder

ADMISA
Advise Customs and Public Health Services

AFB
Air Force Base

AID
Aircraft Identification

ALNOT
Alert Notice

ALTRV
Altitude Reservations

AM
Amendment Message

ARTCC
Air Route Traffic Control

CID
Computer Identifying Number

COMNAV
Communication Navigation

CONUS
Continental United States

DCT
Direct

DoD
Department of Defense

DTG
Date Time Group

EET
Estimated Elapsed Time

ETE
Estimated Time En Route

FAA
Federal Aviation Administration

FIR
Flight Aviation Administration

FLP
Flight Plans

FSS
Flight Service Stations

GMT
Greenwich Mean Time

ICAO
International Civil Aviation Organization

ILS
Instrument Landing System

IR
Instrument Route

MTR
Military Training Routes

NADIN
National Airspace Data Interchange Network

SAR
Search and Rescue

SVC
Service

RS
Remove Stripe

RTF
Radiotelephone

TAS
True Airspeed

UIR
Upper Information Region

VFR
Visual Flight Rules

VHF
Very High Frequency

VOR
Very High Frequency Omnidirectional

Section II
Terms

This section contains no entries.

Section III
Special Abbreviations and Terms

There are no special terms.